
Linux Terminal Tools

Ketan M. (km0@ornl.gov)
Oak Ridge National Laboratory

1

Table of Contents

• Part 1: Overview and Logistics
• Part 2: Basics
• Part 3: Streams, pipe and redirection
• Part 4: Classic Tools: find, grep, awk, sed
• Part 5: Session Management: tmux
• Part 6: ssh: config and tunneling
• Part 7: Secure Communication with GnuPG
• Part 8: Bash Tools
• Part 9: Program Development Tools
• Part 10: Miscellaneous Utilities
• Summary
• Practice and Exercises (if time permits else Offline)

2

Part 1: Overview and Logistics

3

back to toc

orientation and practical stuff

Overview: What shall we learn

• Build powerful command-lines
• We will use Bash shell with default key-bindings
• We will assume GNU/Linux and call it Linux

• Tools that are available (or easily installable) on most installations
• Goal is to be efficient and effective rather than to be an "expert"
• Benefits: save time, efficient for system, long-term payback

• We do not cover: Sysadmin, Networking

4

Slides and practice data for download

• Slides and two text files available for practice

https://github.com/ketancmaheshwari/lisa19
• states.txt

Tabular data with five columns

• prose.txt
Prose with sentences and paragraphs

• c_example.tgz
Code and Makefile example files

5

https://github.com/ketancmaheshwari/lisa19

About You and Me

• Basic exposure to Linux is assumed but feel free to interrupt and ask
questions
• common commands, basic understanding of files and directories, editing.

eg. cd, ls, pwd, cat

• About Me
• Linux Engineer at Oak Ridge National Laboratory
• Command line enthusiast

6

part 2: Basics

7

back to toc

welcome to the school of command line wizardry!

Anatomy of a Typical Command

ls -lh /etc | grep 'conf'

8

command

argument

pipe

options command

Know the System

• id: know yourself
• w: who is logged in (-f to find where they are logging in from)
• lsblk: list block storage devices
• lscpu: display info about the CPUs
• lstopo: display hardware topology (need hwloc, hwloc-gui packages)
• free: free and used memory (try free -g)
• lsb_release -a : distribution info (sometimes not available)

PS0: Use ctrl-c to kill stuck commands or long running ones
PS1: Some commands may not be available: which <cmdname> to verify

9

Know the Processes
• List the processes by name, pid etc: ps (commonly used flags: aux)
• ps implementations: POSIX, GNU and BSD!
• implementations differ in behavior
• determined by style of options: POSIX (-), GNU (--), BSD (no dash) before

options

• Display processes: top, htop, atop
• Lower process priority by being nice and fly under the radar, eg.:
• nice -n 19 tar cvzf archive.tgz large_dir

• Kill a process: kill <pid>
• to kill non-responsive processes
• hung sessions

10

Many ways to get help

• man nano
• Manual pages organized section-wise (see man man for more on sections)
• One page for each section (if exists) eg. man 5 passwd #5th section

• wget --help
• Handy for quick syntax reference

• info curl
• Modern

• Browse /usr/share/doc
• Usually a README file has info and examples
• Browse with a web-browser

11

Working with Files

• cat for relatively short files
cat states.txt

• less is more than more for long files
less /etc/ntp.conf

• tail -f to watch a file growing live
• What can you do about binary files? (not much)

• strings will print the printable strings of file
• od will print file in octal format
• cmp will compare them byte by byte

• Compare text files with
• comm sorted files line by line
• diff differences line by line -- used most frequently, rich options set, see man

12

Internet on command line

• curl is commonly used to download from the web:
curl -O http://www.gutenberg.org/files/4300/4300-0.txt
curl ifconfig.me #quickly find my IP

• wget is similar:
wget http://www.gutenberg.org/files/4300/4300-0.txt
wget https://kubernetespodcast.com/episodes/KPfGep{001..062}.mp3

• lynx can be a useful text-based browser:
• avoid pesky ads on the web
• when internet is slow / only care about text eg. lynx text.npr.org
• read local html pages, eg. those found in /usr/share/doc
• w3m and links are other text-based browsers: w3m lite.cnn.com

13

Be a command line ninja: Navigation

14

kubectl set subject rolebinding admin --user=ldf --group=nsed

cursor ctrl-ectrl-a / ctrl-xx

alt-falt-b

MAC users: terminal pref > profile > keyboard settings > Use option as meta key

ctrl-alt-] <char> moves cursor to 1st occurrence of <char> to left

ctrl-] <char> moves cursor to 1st occurrence of <char> to right

Be a command line ninja: Deletion

15

kubectl get -o template pod/web-pod-13je7 --template={{.status.phase}}

cursor
ctrl-kctrl-u

ctrl-w alt-d

use ctrl-y to paste back the deleted

Wildcards: characters that expand at runtime

• * expands to any number of characters:
ls -lh /etc/*.conf #all items with .conf extension

• ? expands to one character:
ls -ld ? ?? ??? #list items 1,2 or 3 chars long

• Negation (!)
ls -ld [!0-9]* #items that don't start with a number

• Escaping and quoting
• \ for escaping a wildcard
• ' for quoting a wildcard

16

prevent expansion

Quick and Useful Tricks
• !! repeats the last command
• !$ change command, keep last argument:
• cat states.txt # file too long to fit screen
• less !$ #reopen it with less

• !* change command, keep all arguments:
• head states.txt | grep '^Al' #should be tail
• tail !* #no need to type the rest of the command

• alt-. #paste last argument of previous command
• alt-<n>-alt-. #paste nth argument of previous command

17

More Tricks

• >x.txt #create an empty file / "zero" a large file

• lsof -P -i -n #appsusinginternet
tag & later search hard-to-remember command from history
• ctrl-l #clear terminal
• cd - #change to previous dir

• cd #change to homedir
• ctrl-r #recall from history
• ctrl-d #logout from terminal

18

Part 3: Streams, pipe and redirection

19

back to toc

I am sure a gardener designed them!

Terminal I/O Streams and Redirection

20

• Three I/O streams on terminal:
standard input (stdin), standard output (stdout) and standard error
(stderr)

• Represented by "file descriptors" (think of them as ids):
0 for stdin, 1 for stdout, 2 for stderr

• Angle bracket notation used for redirect to/from commands/files:
• > send stream to a file
• < receive stream from a file
• >> to append
• << to in-place append (used in "heredoc")
• <<< is used in "herestring" (not covering today)

• & is used to "write into" a stream, eg. &1 to write into stdout

Anatomy of a redirection using streams

npm install -g tldr > out.txt 2> err.txt

21

command

send
stdout

stderr

send

More Redirection Examples
• Send stdout and stderr to same file:
pip install rtv > stdouterr.txt 2>&1
ac -pd &> stdouterr.txt #short form (bash v4+)
• Disregard both stdout and stderr:
wget imgs.xkcd.com/comics/command_line_fu.png &> /dev/null
#/dev/null is a "null" file to discard streams

• Read from stdin as output of a command
diff <(ls dirA) <(ls dirB)

• Append stdout to a log file:
sudo yum -y update >> yum_update.log

22

The pipe: run second command using output of first

• A pipe is a Linux concept that automates redirecting the output of one
command as input to a next command.
• Use of pipe leads to powerful combinations of independent commands. eg.:
find .| less #read long list of files page wise
head prose.txt | grep -i 'little'

echo $PATH | tr ':' '\n' #translate : to newline
history | tail #last 10 commands

free -m|grep Mem:|awk '{print $4}' #available memory

du -s *|sort -n|tail #10 biggest files/dirs in pwd

23

Demystifying and debugging piped commands

free -m|grep Mem:|awk '{print $4}'
is equivalent to running the following 4 commands:
free -m > tmp1.txt
grep Mem: tmp1.txt > tmp2.txt

awk '{print $4}' tmp2.txt

rm tmp1.txt tmp2.txt

Reducing the piped stages is often efficient and easier to debug. For instance, the above
pipeline may be reduced like so:

free -m|awk '/Mem:/{print $4}' #more on awk later

24

More pipe examples

25

#get pdf of a man page
man -t diff | ps2pdf - diffhelp.pdf

#get today's files
ls -al --time-style=+%D | grep `date +%D`

#top 10 most frequently used commands
history | awk '{a[$2]++}END{for(i in a){print
a[i] " " i}}' | sort -rn | head

Commands that only accept literal args
• Most commands receive input from stdin (so, pipe) and file, eg.

wc < states.txt #ok
wc states.txt #ok

• There are some exceptions though
• Some receive input only from stdin and not from file, eg.
• tr 'N' 'n’ states.txt #(strangely) NOT OK
• tr 'N' 'n’ < states.txt #ok

• Some receive input neither from stdin nor from file, eg.
• echo < states.txt #NOT OK (assuming want to print file contents)

• echo states.txt #NOT OK (assuming want to print file contents)

• echo "Hello miss, howdy? " #ok, takes literal args
• cp, touch, rm, chmod are other examples

26

xargs: When pipe is not enough!

• Some commands do not read from standard input, pipe or file; they
need arguments
• Additionally, some systems limit on number of arguments on

command line
• for example: rm tmpdir/*.log will fail if there are too many .log files

• xargs fixes both problems
• Converts standard input to commands into literal args
• Partitions the args to a permitted number and runs the command over them

repeatedly
• For instance, create files with names on the somelist.txt file:
xargs touch < somelist.txt

27

GNU Parallel

• Run tasks in parallel from command-line
• Similar to xargs in syntax
• Treats parameters as independent arguments to command and runs

command on them in parallel
• Synchronized output -- as if commands were run sequentially
• Configurable number of parallel jobs
• Well suited to run simple commands or scripts on compute nodes to

leverage multicore architectures
• May need to install as not available by default :

www.gnu.org/software/parallel

28

https://www.gnu.org/software/parallel/

GNU Parallel Examples*

- Find all html files and move them to a directory
find . -name '*.html' | parallel mv {} web/

- Delete pict0000.jpg to pict9999.jpg files (16 parallel jobs)
seq -w 0 9999 | parallel -j 16 rm pict{}.jpg

- Create thumbnails for all picture files (imagemagick software needed)
ls *.jpg | parallel convert -geometry 120 {} thumb_{}

- Download from a list of urls and report failed downloads
cat urlfile | parallel "wget {} 2>errors.txt"

29*From the gnu parallel 2018 book at https://doi.org/10.5281/zenodo.1146014

Part 4: Classic Tools: find, grep, awk, sed

30

back to toc

the evergreens

find: search files based on criteria

find /opt -name "README*" -exec wc -l {} +

31

path

criteria (optional)

action (optional)

space

Features of find
• path: may have multiple paths, eg. find /usr /opt -iname "*.so"

• criteria
• -name, -iname, -type (f,d,l), -inum <n>
• -user <uname>, -group <gname>, -perm (ugo+/-rwx)
• -size +x[c], -empty, -newer <fname>
• -atime +x, -amin +x, -mmin -x, -mtime -x
• criteria may be combined with logical and (-a) and or (-o)

• action
• -print: default action, display
• -ls: run ls -lids command on each resulting file
• -exec cmd: execute command
• -ok cmd: like exec except that command executed after user confirmation

32

find Examples
• find . -type f -iname "*.txt" #txt files in curdir
• find . -maxdepth 1 #equivalent to ls
• find ./somedir -type f -size +512M -print #all
files larger than 512M in ./somedir

• find /usr/bin ! -type l #not symlinks in /usr/bin

• find $HOME -type f -atime +365 -exec rm {} +
#delete all files that were not accessed in a year

• find . \(-name "*.c" -o -name "*.h" \) #all
files that have either .c or .h extension

33

grep: Search for patterns in text

• grep originally was a command "global regular expression print" or
'g/re/p' in the ed text editor

• It was so useful that a separate utility called grep was developed

• grep will fetch lines from a text that has a match for a specific pattern

• Useful to find lines with a specific pattern in a large body of text, eg.:
• look for a process in a list of processes
• spot check a large number of files for occurrence of a pattern
• exclude some text from a large body of text

34

Anatomy of grep

grep -i -n 'c.l' states.txt

35

options

regular expression

input file

Useful grep Options

• -i: ignore case
• -n: display line numbers along with lines
• -v: print inverse ie. lines that do not match the regular expression
• -c: print a count of lines of matches
• -A<n>: include n lines after the match
• -B<n>: include n lines before the match
• -o: print only the matched expression (not the whole line)
• -E: allows "extended" regular expressions that includes (more later)

36

Regular Expressions

• A regular expression (regex) is an expression that matches a pattern.
• Example pattern

• regex: è no match
• regex: è one match è "Linux is fun."
• regex: è two matches è "Linux is fun." and "So is music."
• regex: è one match è "So is music."
• regex: è one match è "So is music."

37

f u

^Linux is fun.$
^So is music.$
^Traffic not so much.$

n

b a r

i s

^ S o

i c . $

Regular Expressions-contd.

• . is a Special character; will match any character (except newline)
eg. b.t will match bat, bbt, b%t, and so on but not bt, xbt etc.

• Character class: one of the items in the [] will match, sequences
allowed:
'[Cc]at' will match Cat and cat
'[f-h]ate' will match fate, gate, hate

• ^ within a character class means negation
eg. 'b[^eo]at' will match brat but not boat or beat

38

Extended Regular Expressions

• Enable by using egrep or grep -E

• '*' matches zero or more, '+' matches one or more, '?' matches zero or one
occurrence of the previous character
eg. [hc]+at will match hat, cat, hhat, chat, cchhat, etc.

• '|' is a delimiter for multiple patterns, '(' and ')' let you group patterns
eg.([cC]at)|([dD]og) will match cat, Cat, dog and Dog

• {} may be used to specify a repetition range
eg. ba{2,4}t will match baat, baaat and baaaat but not bat

39

grep Examples
• Lines that end with two vowels:
grep '[aeiou][aeiou]$' prose.txt

• Check 5 lines before and after the line where term 'little' occurs:
grep -A5 -B5 'little' prose.txt

• Comment commands and search later from history
some -hard 'to' \remember --complex=command #success
history | grep '#success'

• Confirm you got an ambiguous spelling right
grep -E '^ambig(uou|ou|ouo)s$' /usr/share/dict/linux.words

• find+grep is one very useful combination
find . -iname "*.py" -exec grep 'add[_-]item' {} +

40

awk: Extract and Manipulate Data

• A programmable filter that reads and processes input line by line
• Rich built-in features:
• explicit fields ($1 ... $NF) & records management
• functions (math, string manipulation, etc.)
• regular expressions parsing and filtering

• Features like variables, loops, conditionals, associative arrays, user-
defined functions

41

Highly recommended book: The awk programming language by Aho, Kernighan
and Weinberger, ia802309.us.archive.org/25/items/pdfy-MgN0H1joIoDVoIC7/The_AWK_Programming_Language.pdf

Anatomy of an awk program

42

BEGIN {actions} #run one time before input data is read

/pattern/ or condition {actions} #run actions for each line of
input files and/or stdin that satisfy /pattern or condition/

END {actions} #run one time after input processing section

At least one of the BEGIN, /pattern/ or condition, {}, END section needed

Often used as one-line idiom of the form:
awk 'awk_prog' file.txt

OR
command | awk 'awk_prog'

where awk_prog is:

/patterns/, conditions and actions

• A pattern is a regex that matches (or not) to an input line, eg.
/New/ # any line that contains ‘New’
/^[0-9]+ / # beginning with numbers
/(POST|PUT|DELETE)/ # has specific words

• A condition is a boolean expression that selects input lines, eg.
$3>1 # lines for which third field is greater than 1
• An action is a sequence of ops, eg.

{print $1, $NF} #print first and last field/col
{print log($2)} #get log of second field/col
{for (i=1;i<x;i++){sum += $3}} #get cumulative sum

• User defined functions may be defined in any action block

43

Useful awk one-liners

• awk '{print $1}' states.txt

• awk '/New/{print $1}' states.txt

• awk NF > 0 prose.txt # print lines that has
at least one field (skip blank lines)

• awk '{print NF, $0}' states.txt #fields in
each line and the line

• awk '{print length($0)}' states.txt #chars in
each line
• awk 'BEGIN{print substr("New York",5)}' #York

44

sed: parse and transform text

• sed is a stream editor
• Looks for a pattern in text and applies changes (edits) to them
• A batch or non-interactive editor
• Reads from file or stdin (so, pipes are good) one line at a time
• The original input file is unchanged (sed is also a filter), results are

sent to standard output

• Most frequently used idiom is for text substitution

45

Anatomy of a typical sed command

sed 'addrs/New/Old/g' states.txt

46

delim input file

regex replace

modifiercommand

address

sed Options

• address: may be a line number, range, or a match; default: whole file
• command: s:substitute, p:print, d:delete, a:append, i:insert, q:quit
• regex: A regular expression
• delimiter: Does not have to be /, can be | or : or any other

character
• modifier: may be a number n which means apply the command to nth

occurrence, g means apply globally in the line
• Common sed flags: -n (no print), -e (multiple ops), -f (read sed

from file), -i (in place edit [careful])

47

Useful sed Examples

• sed -n '5,9p' states.txt #print lines 5 through 9
• sed '20,30s|New|Old|1' states.txt #affects 1st occurrence in ln20-30

• sed -n '$p' states.txt #print last line

• sed '1,3d' states.txt #delete first 3 lines

• sed '/^$/d' states.txt #delete all blank lines

• sed '/York/!s/New/Old/' states.txt #substitute except York

• kubectl -n kube-system get configmap/kube-dns -o yaml | sed
's/8.8.8.8/1.1.1.1/' | kubectl replace -f -

48

Part 5:
Session Management: tmux

49

back to toc

for when the network goes down on my world-saving project

Workspace Management with tmux

• tmux(v1.8) is a terminal multiplexer that lets you create
multiple, persistent terminals within one login
• In other words tmux is a program which allows you to have

persistent multiple "tabs" in a single terminal window.
• Useful
• when eg. a compilation or other operation will take a long time
• for interactive multitasking
• for exotic stuff such as pair programming
• to preserve environment for multiple operations

50

A Short tmux Tutorial

• Typical tmux workflow

tmux new -s s1 #start a new session
run any commands as normal
ctrl-b :detach #detach the session, logout, go home
#later, log in again
tmux a -t s1 #get the same session back

• Other useful tmux commands

ctrl-b (#switch to previous session
ctrl-b) #switch to next session
tmux ls #list all sessions
tmux kill-session -t s1 #kill a session

51

Live collaboration with tmux

#user1#

tmux -S /tmp/collab
chmod 777 /tmp/collab

#user2#
tmux -S /tmp/collab attach

52

Create Panes and Synchronize with tmux

tmux new -s s2 #start a tmux session

ctrl-b " #split horizontally
ctrl-b % #split vertically

ctrl-b :setw synchronize-panes on

#synchronized#
ctrl-b :setw synchronize-panes off

ctrl-b o #move through the panes

ctrl-b x #kill the active pane

53

Part 6: ssh config and tunneling

54

back to toc

build secure tunnels

ssh config (~/.ssh/config)

Host login1
hostname login1.ornl.gov
User km0

Host cades
Port 22
hostname or-slurm-login.ornl.gov
ProxyJump login1
User km0
ServerAliveCountMax=3 #max num of alive messages sent without ack
ServerAliveInterval=15 #send a null message every 15 sec

now to ssh/scp to cades, just need "ssh/scp cades ..."

55

Benefits of ssh config

• Makes ssh commands easier to remember in case of multiple hosts
• Customizes connection to individual hosts
• And much more, see man 5 ssh_config
• For example: ssh summit is sufficient to connect to
summit.olcf.ornl.gov with all the properties mentioned in the
section:

Host summit
Port 22
hostname summit.olcf.ornl.gov
User ketan2
ServerAliveCountMax=3
ServerAliveInterval=15

56

Port forward over SSH Tunnel*

lclhost$ ssh -L lport:host:hport remotehost -N

57

local

ssh command localport

"hostname" on remote host

port on remote host

remote
host

no command

* simplest form

SSH Tunneling Example

• Run an HTTP server on remote node and browse through local web
browser:

step 1. remote$ python2 -m SimpleHTTPServer 25000
OR
step1. remote$ python3 -m http.server 25000

step2. local$ ssh -L 8000:localhost:25000 id@remote -N

step3. Open browser on local and navigate to http://localhost:8000

58

Incremental Remote Copy with rsync

• Synchronize data between local and remote storage
• Rich set of options (see man):

-a and -v most commonly used
rsync -av localdir/ remotehost:~/remotedir
trailing / imp in localdir, else, the dir will be synced not contents

• A useful rsync hack: fast deletion of a large directory
mkdir empty && rsync -a --delete empty/ large_dir/

59

part 7: Secure Communication with GnuPG

60

back to toc

Share top secrets securely over web

GNU Privacy Guard Basics

• A tool for secure communication
• We cover
• keypair creation
• key exchange and verification
• encrypting and decrypting documents
• authenticating documents with digital signatures

• We do not cover
• public-key cryptography concepts
• sophisticated and advanced use-cases

61

Create a new keypair

gpg --gen-key #answer the prompted questions
• Provide name and email as ID, choose hard-to-guess passphrase
• Keypair artefacts in $HOME/.gnupg dir

• Create a revocation certificate
gpg --output revoke.asc --gen-revoke <ID>
• use the email as ID
• Useful to notify others the keypair may no longer be used -- eg. if you

forgot your passphrase, lost keypair etc.

62

Key Exchange and Verification

• Export a public key
gpg --output pub.gpg --export <ID> #binary
gpg --armor --export <ID> > pubtxt.gpg #ascii

• Import a public key
gpg --import billpub.gpg #import Bill's pubkey

• Verify and sign an imported key
gpg --edit-key b@ms.us #out key info & prompt
...
command> fpr #fingerprint, verify over phone
command> sign #verify at prompt and done!

63

Encrypting and Decrypting Documents

• Encrypt a document for Bill using Bill's public key
gpg --output doc_pdf.gpg --encrypt --recipient
b@ms.us doc.pdf #must have Bill's public key
• Bill Decrypts the document (must have his private key & passphrase)
gpg --output doc.pdf --decrypt doc_pdf.gpg

• Documents may be encrypted without key, just with passphrase
gpg --output doc_pdf.gpg --symmetric doc.pdf
Enter passphrase:

64

Authenticate Docs with Digital Signatures

• Digitally signed document ensure they are authentic & untempered
gpg --output doc.signed --sign doc.pdf
Enter Passphrase:
Must have the private key to sign

• A signed document can be verified and decrypted like so:
gpg --ouput doc.pdf --decrypt doc.signed
Must have owner's public key

65

part 8: Bash Tools

66

back to toc

For when that 'hello world' becomes a project

Bash Shell Basics

• Commands and utilities such as grep, sed, awk may be invoked
• Variables, constants, conditionals, loops and functions may be defined
• Arithmetic operations available
• Logical operations && (AND) and || (OR) available:
• wget ...|| curl ... : run curl iff wget fails
• make install && make test : test iff install succeeds

• Shell "Startup" files set environment as you start your shell
• .bashrc : a file that runs in each new shell that is spawned
• .bash_profile : a file that runs only in a "login shell" (and not all shells eg. it

won't run if you invoke a shell script that creates a subshell)

67

Aliases and Functions

• Aliases are short and convenient names for long commands
• They are usually defined in .bashrc or a separate .aliases file
• To temporarily bypass an alias (say we aliased ls to ls -a), use \:
\ls
• Bash functions are usually defined in .bashrc/.bash_profile
• Functions are more expressive and preferred over aliases

68

Examples of useful aliases
• alias s=ssh
• alias c=clear
• alias cx='chmod +x'
• alias ls='ls -thor'
• alias more=less
• alias ps='ps auxf'
• alias psg='ps aux | grep -v grep | grep -i -e USER -e'

• alias ..='cd ..'
• alias myp='ps -fjH -u $USER'
• alias cleanup='rm -f *.tmp *.aux *.log'

69

Examples of useful Functions

• mcd() { mkdir -p $1; cd $1 }
• cdl() { cd $1; ls}
• backup() { cp "$1"{,.bak};} #test first
• gfind() { find / -iname $@ 2>/dev/null }
• lfind() { find . -iname $@ 2>/dev/null }
• rtfm() { help $@ || man $@ || $BROWSER
"http://www.google.com/search?q=$@"; }

• See /usr/share/doc/bash-*/examples/functions for more
function examples

70

Variables and Command Substitution

• Variables are implicitly typed
• May be a literal value or command substitute
• vname=value #assign value to variable vname
• $vname #read value of variable vname

• Command substitution:
• curdir=$(pwd)
• curdate=$(date +%F)
• echo "There are $(ls -1 | wc -l) items in the current dir"

71

#!/bin/sh
msg="Hello World"
echo $msg

Conditionals
• if-then-else construct to branch similar to programming languages
• Two forms of conditional evaluation mechanisms:
• test and […]

$ if test $USER = 'km0'; then echo 'I know you';
else echo 'Who are you'; fi

$ if [-f /etc/yum.conf]; then echo 'yum.conf
exists'; else echo 'file do not exist'; fi

72

Conditionals summary

• string
• -z string: length of string 0
• -n string: length of string not 0
• string1 = string2: strings are identical (note a single =)

• numeric
• int1 -eq int2: first int equal to second
• -ne, -gt, -ge, -lt, -le: not-equal, greater-than, -greater-or-equal...

• file
• -r filename: file exists and is readable
• -w filename: file exists and is writable
• -f, -d, -s: regular file, directory, exists and not empty

• logic
• !, -a, -o: negate, logical and, logical or

73

Loops
• Basic structure (three forms):
for i in {0..9}; do echo $i; done

for ((i=0;i<10;i++)){ echo $i;} #C-like

for var in list; do command; done #'python-like'

• often used with command substitution:
for i in $(\ls -1 *.txt); do echo "$i"; done
for i in $(get_files.sh); do upload.sh "$i"; done

74

The heredoc

• Create "inplace" files
• example:
• sh << END
echo "Hello World"
END <press enter>
• Uses of heredoc
• Multiline message using cat
• Use variables to plug into

created files, eg test multiple
configurations for a program

75

cat << EOF | kubectl create -f -
apiVersion: v1
kind: Pod
metadata:

name: nginx
spec:

containers:
- name: nginx

image: nginx
EOF

#!/bin/bash
for i in local remote cluster all
do

cat <<END>install.yml

- hosts: $i
<other stuff>
END
ansible-playbook install.yml --check > out"$i".txt

done

part 9: Program Development Tools

76

back to toc

get-serious stuff

Programming Language Platforms

77

• Interpreted programming platforms available on most systems
• Python, Perl, awk, bash
• We cover awk, some bash and a bit of python

• Compiled programming platforms available on most systems
• C, Fortran
• We cover C in this section

• Additionally, a build system called Make is available

Elements of C Program Development

• The source code that is written/edited by a programmer
• Often split into header files (.h) and source code files (.c)

• The compiler gcc does the following
• compile (-S) convert the source code (.c) to assembly code (.s)
• assemble (-c) -- translate the assembly code to object code (.o)
• link (-l) -- link to the standard libraries to produce executable

• By default gcc combines the above stages producing the executable
gcc hello.c #creates a.out; no .o or .s files

78

The make build system

• Automates compilation of multiple source files in a complex project

• Streamlines dependent actions and performs them in order

• Reads configuration from a "build" file usually named as Makefile

• Makefile acts as an artefact of project build process

79

Anatomy of a Makefile

an_exe: main.o dep1.o dep2.o
gcc -o an_exe main.o dep1.o dep2.o -lm

dep1.o: dep1.c
gcc -c dep1.c

dep2.o: dep2.c
gcc -c dep2.c

main.o: main.c
gcc -c main.c

80

rules

target dependencies

command to achieve target

must be a tab

How the make command works

• The make command will read from the Makefile and run commands
in order to build the ultimate target
• For instance, in the Makefile shown in previous slide, make will run

commands for rule 2-4 followed by rule 1:
gcc -c dep1.c #create dep1.o
gcc -c dep2.c #create dep2.o
gcc -c main.c #create main.o

gcc -o an_exe main.o dep1.o dep2.o -lm

81

part 10: Miscellaneous Utilities

82

back to toc

handy like midnight snack

Get things done at specific times with at

• at will execute the desired command on a specific day and time
• at 17:00 #press enter
at> log_days_activities.sh #smtimes no at> prompt
[ctrl-d]
• at offers keywords such as now, noon, today, tomorrow
• offers terms such as hours, days to be used with the + symbol

at noon
at now + 1 year
at 3:08pm + 1 day
at 15:01 December 19, 2018

83

Get things done periodically with cron

• cron will execute the desired command periodically
• A crontab file controls and specifies what to execute when
• An entry may be created in any file and added to system with the crontab

command like so:
echo '15 18 30 6 * find /home -mtime +30 -print' > f00
crontab f00 #add above to system crontab

• crontab -l #list crontab entries
crontab -r #remove crontab entries

• Output of the cron'd command will be in mail (alternatively it may be
redirected to a file with '>')
• What does the entries in a crontab mean though? (see next slide)

84

Anatomy of a crontab entry

15 18 30 6 * find /home -mtime +30 -print

85

day of
month
(0-max)

hours
(0-23)

day of week
(Sun=0)

month(Jan=1)

mins
(0-59)

command to be executed

Run the find command on June 30 of every year at 6:15 PM no matter what day of week it is.

Math

• Generate random number using shuf (may need to install)
• shuf -i 1-100 -n 1

• Format numbers with numfmt
• numfmt --to=si 1000
1.0K
• numfmt --from=iec 1K
1024

• bc is a versatile calculator
• bc <<< 48+36 #no space on either side of +
• echo 'obase=16; ibase=10; 56'|bc #decimal to hex
• echo 'scale=8; 60/7.02' |bc #arbitrary precision

86

Python utilities

• Stand up a simple web server in under a minute with Python
• python3 -m http.server 35000

• Pretty print a json file
• python3 -m json.tool afile.json

• Run small python programs
• python -c "import math; print(str(math.pi)[:7])"

• Do arithmetic
• python -c "print(6*6+20)"
• python -c "fctrl=lambda x:0**x or x*fctrl(x-1);
print(fctrl(6))" #compute factorial

87

Random stuff - 1

• Run a command for specified time using timeout:
timeout 2 ping google.com
• watch a changing variable

• watch -n 5 free -m
• Say yes and save time

• yes | pip install pkg --upgrade
• yes "this is a test" | head -50 > testfile.txt # create
file with arbitrary no. of lines

• Create pdf from text using vim :
vim states.txt -c "hardcopy > states.ps | q" &&
ps2pdf states.ps #convert ps to pdf

88

Random stuff - 2

• Run a command as a different Linux group
• sg grpgit -c 'git push'

• Display a csv in columnar/tabular format
• column -t -s , filename.csv

• Have difficulty sending binary executables over emails?
• xxd f.exe f.hex #hexdump the exe, send over email
• xxd -r f.hex f.exe #receiver convert back to exe

• Generate password
• head /dev/urandom | tr -dc A-Za-z0-9 | head -c 8
• openssl rand 8 -base64 | cut -c1-8 #-base64 8 for some version

89

Random stuff - 3

• pandoc to convert between md, tex, txt, html, docx, pdf, odt
pandoc manual.md -o manual.pdf
pandoc example.txt -o example.html
pandoc -s example.txt -o example.docx

• Parse and read xml files with xmllint
• Split a large file into small chunks (eg. to send as attachment in mail)
• split -b 20M large.tgz parts_ #20MB chunks
#send parts_* over mail
• cat parts_a* > large.tgz #at receiving end

90

Summary

• Linux command-line environment powerful if exploited well
• Pipes and redirection key Linux contributions
• Rewarding in the short-term as well as long-term
• Classical and modern tools well suited for modern-style usage
• Practice!

• Send comments, feedback, questions: km0@ornl.gov

91

back to toc

Credits, references and resources

• The man, info and doc pages
• bash: gnu.org/software/bash/manual/bashref.html
• grep: gnu.org/software/grep/manual/grep.html
• sed: catonmat.net/blog/worlds-best-introduction-to-sed
• awk: ferd.ca/awk-in-20-minutes.html
• tmux: gist.github.com/MohamedAlaa/2961058
• wikipedia articles: unix, linux, Bash_(Unix_shell)
• commandlinefu.com

92

http://www.gnu.org/software/bash/manual/bashref.html
http://www.gnu.org/software/grep/manual/grep.html
http://www.catonmat.net/blog/worlds-best-introduction-to-sed
http://ferd.ca/awk-in-20-minutes.html
https://gist.github.com/MohamedAlaa/2961058
https://www.commandlinefu.com/

Where to go from here

• github.com/jlevy/the-art-of-command-line
• jeroenjanssens.com/2013/08/16/quickly-navigate-your-filesystem-from-the-command-

line.html
• linux.byexamples.com
• catonmat.net/blog/bash-one-liners-explained-part-three
• wiki.bash-hackers.org
• gist.github.com/MohamedAlaa/2961058#file-tmux-cheatsheet-markdown
• wizardzines.com
• crontab.guru
• leimao.github.io/blog/Tmux-Tutorial
• unix.stackexchange.com
• danyspin97.org/blog/makefiles-best-practices

93

http://www.github.com/jlevy/the-art-of-command-line
http://www.jeroenjanssens.com/2013/08/16/quickly-navigate-your-filesystem-from-the-command-line.html
https://www.linux.byexamples.com/
http://www.catonmat.net/blog/bash-one-liners-explained-part-three
https://wizardzines.com/
https://wizardzines.com/
https://wizardzines.com/
https://crontab.guru/
https://leimao.github.io/blog/Tmux-Tutorial
https://unix.stackexchange.com/
https://danyspin97.org/blog/makefiles-best-practices

Thank you for your time and attention
Questions?

94

Practice and Exercises

• Create three tmux sessions: s1, s2 and s3; detach them
• List the active sessions with tmux ls
• Kill the active sessions with tmux kill-session -t <name>
• Can you kill them all with one command? hint: use xargs in a pipe
• Create a tmux session and split the screen into 4 panes vertically and

horizontally
• Set it so that all panes are synchronized. Test with any command.

95

Practice and Exercises

• Use your favorite editor to edit .bashrc and .bash_profile --
• add a line: echo 'I am bashrc' to .bashrc
• add a line: echo 'I am bash_profile' to .bash_profile

• Close and reopen terminal, what do you see? Within terminal type
/bin/bash, what do you see?
• Create a copy of prose.txt using cp prose.txt tmp.txt; make small change to

tmp.txt and compare prose.txt and tmp.txt with cmp, comm and diff
• Delete those lines from .bashrc and .bash_profile when done
• The character class [[:class:]] may be used as wild card:

class may be alpha, alnum, ascii, digit, upper, lower, punct, word; try ls
/etc/[[:upper:]]*

96

Practice and Exercises

• List all conf files in /etc you have access to, redirect stderr to
/dev/null

• Build a software and collect errors and output in separate files, fill in
the __
make all __ std.out __ >std.err

• Run cmake command and gather all logs in a single file in background
cmake .. __ __ cmake.log __ #bash v4 and above

• Same as above in long format
mpirun -np 8 ./a.out __ outerr.txt 2>__1

97

Practice and Exercises

Simplify the following command line:
TOKEN=$(kubectl describe secret -n kube-system
$(kubectl get secrets -n kube-system | grep
default | cut -f1 -d ' ') | grep -E '^token' |
cut -f2 -d':' | tr -d '\t' | tr -d " ")

Hints:
• Replace the cut commands with awk commands
• Accommodate the grep within awk
• Accommodate the two tr commands within awk commands (hint: use
awk's gsub built-in function)

98

Practice and Exercises

• Create a file titled the words that start with letter 'C' (fill the __):
• grep -i '^c' states.txt |awk '{print $4}'| __ touch

• Remove temporary files:
• find . –iname '*.tmp' | __ rm #ok

• Create a directory for all running processes
• ps | awk ‘NR != 1 {print $4}’| mkdir #NOT OK
• ps | awk ‘NR != 1 {print $4}’| __ mkdir #ok

99

Practice and Exercises

• Use sed to print lines 11-15 of states.txt
• Fill up the __ in the following find commands

• __ . -type d -perm 777 -exec chmod 755 {} +
• find . -type __ -name "*.tmp" -exec rm -f {} +
• find __ -atime +50 #files <50 days in /usr/local/lib
• find . -mtime __ –mtime -100 #<50 & <100 days

• Use awk to print only the state names and capitals columns from states.txt
• use grep to search for all lines of file states.txt containing a word of length

four or more starting with the same two characters it is ending with. You
may use extended regular expressions (-E)

100

Practice and Exercises

Muammar Gaddafi was a Libyan politician. He was in the news a few
years ago. News agencies spelled his name differently like so:
• Muammar al-Kaddafi (BBC)
• Moammar Gadhafi (Associated Press)
• Muammar al-Qadhafi (Al-Jazeera)
• Mu'ammar Al-Qadhafi (US Department of State)

Your task is to come up with a Regular expression that will match with
all the above occurrences. (Hint: use extended regular expression)
• Test with both grep and awk by putting the above lines in a file as

well as a heredoc

101

Practice and Exercises

• Compare the time it takes with and without the -C switch of scp to
send data remotely (hint: use the time command)
• Create a config file in your ~/.ssh directory, make appropriate

changes and add the contents presented in previous slides to it. How
will you test if it works?

102

Practice and Exercises

• Run yes for 5 seconds using timeout, collect the output in file x.txt
• Create an alias d to print current date
• Run style and diction (if available) on prose.txt
• Interpret the following crontab entry:
30 21 * * * find /tmp /usr/tmp -atime +30 -exec rm -f {} +

• Frame an at command to run the date command tomorrow at 8 p.m.
• write a shell script to find all the prime numbers between 1000 and

10000
• hints: use for, if, factor, wc

103

