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Part 1: Overview and Logistics
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Overview: What shall we learn
• Familiarize with GNU Parallel features
• How to utilize HPC with GNU Parallel
• Resource Management
• Working with multicore architectures

• Running workflow tasks asynchronously
• Data dependencies and Parallelism

• Strategies to run applications and production tasks with GNU Parallel
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Slides and Practice Data for Download

• Slides and practice files available:

github.com/ketancmaheshwari/escience23tut

tinyurl.com/4v4b8pch

/data has data used for exercises.
/src has code discussed in the tutorial (except the one liners).
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About You and Me

• Basic exposure to Linux is assumed but feel free to interrupt and ask 
questions
• common commands, basic understanding of files and directories, process.

eg. cd, ls, pwd, cat, date, seq

• About Me
• Sr. Linux Engineer at Oak Ridge National Laboratory
• Command line and Linux terminal enthusiast
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About the Slides

• 8 Parts, each part has 4-10 slides
• Lots of examples in slides
• Summary and Practice Exercises

We try to solve them here (if time permits)

• Solve it offline if we run out of time
• Plan to publish solutions around Nov 10, 2023, on Github
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Part 2: Introduction to GNU Parallel
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What is GNU Parallel

• A terminal tool to parallelize processes
• Easy to install, highly configurable
• Well suited to run many single-core / single-thread tasks on:
• Compute nodes leveraging multicore architectures
• Bag of workstations such as testbeds
• Works well with Resource Managers and Job Schedulers

• Mature (20 years old), Simple and Powerful!
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Installation
• Download the latest version:
curl -s https://ftp.gnu.org/gnu/parallel/parallel-
latest.tar.bz2 -o parallel-latest.tar.bz2

• Untar and cd into it: 
tar zxf parallel-latest.tar.bz2
cd parallel-20230822

• Install:
./configure --prefix=$HOME/parallel-install
make install    # needs libevent

• Set PATH and it is ready to go:
export PATH=$HOME/parallel-install/bin:$PATH
which parallel
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Many sources for getting help

• link to youtube videos by Ole Tange: www.pi.dk/1
• www.gnu.org/software/parallel/parallel_cheat.pdf
• Searching for “gnu parallel” on Hacker news, Reddit, Stack Exchange 

yields many helpful links
man parallel

man parallel_tutorial 

parallel --help    # summary of most imp options

parallel --max-line-length-allowed # max size of cmdline

parallel --number-of-cpus && parallel --number-of-cores
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Anatomy of a GNU Parallel Command

parallel -j 8 wc -l ::: /etc/*.conf
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argument

triple colon arg sep

options command



Another Form of the same command

\ls -1 /etc/*.conf | parallel -j8 wc -l
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pipe



Aside1: Command line Navigation
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parallel --filter '{1} < {2}' echo {1} {2} ::: {37..43} ::: {37..43}

cursor ctrl-ectrl-a / ctrl-xx

alt-falt-b

MAC users: terminal pref > profile > keyboard settings > Use option as meta key

ctrl-alt-] <char> moves cursor to 1st occurrence of <char> to left

ctrl-] <char> moves cursor to 1st occurrence of <char> to right



Aside2: command line Deletion
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inotifywait -qmre MOVED_TO -e CLOSE_WRITE --format %w%f ./data | parallel -u echo

cursor
ctrl-kctrl-u

ctrl-w alt-d

use ctrl-y to paste back the deleted



GNU Parallel Alternatives

• xargs, make -j, find + exec, and others are often cited 
as alternatives

• A comparison is made and summaries available:
 gnu.org/software/parallel/parallel_alternatives.html

• An insightful read, though it may or may not be unbiased! J 
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Part 3: Features and Examples - I
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Basic Syntax and Semantics
Triple colon: Run <command> in parallel for each of the input parameters:
parallel [options] <command> ::: <args>

Quad colon: Run <command> in parallel for each line in input file; -a is alternative syntax to 
quad colon
parallel [options] <command> :::: <input_file>
parallel [options] -a <input_file> <command>

Semantics: Run <command1> in parallel for each line of the standard output from 
<command0> as arg

<command0> | parallel [options] <command1>
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Examples
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● Triple colon:
parallel echo ::: {1..4}
parallel du -h ::: */*
May use -N0 when no commands have no arguments (still need to provide :::)
parallel -N0 date ::: xyz

● Quadruple colon:
parallel echo :::: /etc/passwd
parallel -a /etc/passwd echo # same as above

● Another example of the pipe form:

find /somedir/subdir -iname ’*.txt’ -print | parallel echo 
“File: “



Examples
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• With multiple ::: all combinations will be generated
parallel echo ::: A B C ::: 1 2 3

is equivalent to a nested for loop:

for i in A B C; do
  for j in 1 2 3; do
    echo $i $j
  done
done

• --link to map the args 1:1:
parallel --link echo ::: A B C ::: 1 2 3



Examples
● Use {[n]} to put nth set of arguments in multiple commands / args:

parallel “mkdir -p /tmp/dir.{1} ; fallocate -l 1K 
/tmp/dir.{1}/file.{2}” ::: {1..4} ::: {a..d}

● Other patterns may be put in {} to treat args in special ways:
{.} remove extension, eg. /tmp/afile.txt --> /tmp/afile
{/} extracts just the filename, eg. /tmp/afile.txt --> afile.txt

{#} sequence number of the job
{%} slot number of the job

parallel echo "sequence {#} slot {%}" ::: {1..100}
parallel echo {2.} {1} ::: 1 2 ::: afile.txt bpic.png
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Highly Configurable I
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● --keep-order/-k will ensure the output order is preserved
parallel -k “sleep {} ; echo {}” ::: {5..1}

● --jobs/-j to control the job slots (limited by available cores)
parallel -j 2 echo ::: 5 4 3 1 2
0 means as many jobs as possible, default is all cores on a machine. May be provided as %. 
Silently ignores if value is greater than cores available.

● -N to limit the arguments received at a time
parallel -N3 echo ::: {A..F}
A B C
D E F



Highly Configurable II
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● --timeout: kill a job if it takes more than a certain time (sec)
parallel --timeout 1000 ./runtask ::: {1..100}

may be specified as a percentage value of the median runtime (<100% won’t make sense)
parallel --timeout 200% ./runtask ::: {1..100}

● --progress, --eta, --bar: show progress of a run, in terms of estimated time, tasks, 
nodes etc.

● --wd <dirlocation>: provide a working directory (cwd) for commands

● --dry-run: show what will run in standard output but will not run anything, very useful



Checkpoint and Resume
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--joblog, --resume: Allows for monitoring progress, checkpointing 
and resuming an interrupted / partially failed run

parallel -j 16 -N 100 --joblog /tmp/job.log --resume 
gzip {} :::: filelist.txt

Additionally, --retry-failed (reads from log) and --resume-
failed (resumes afresh) to try failed jobs again. 



Saving Output in Files, Variables, 
Databases

• Outputs may be saved in files:
parallel --files echo ::: A B C # will be saved in /tmp

• Saving output in CSV file:
parallel --results my.csv echo ::: A B ::: C D

• Saving to an SQL database:
DBURL=sqlite3:///mydatabase; TABLE=$DBURL/mytable
parallel --sqlandworker $TABLE echo ::: A B ::: C D

• Saving to shell variables:
env_parallel --install # activate parset, restart shell
parset myvar1,myvar2 -j2 echo ::: a b
echo $myvar1 $myvar2
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Config Profiles I
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• Specific configuration profiles may be saved in files and used in 
combinations:
/etc/parallel/config for systemwide configuration
~/.parallel/config for user-level configuration which will override 
systemwide:

$ cat ~/.parallel/savesql
--sqlandworker sqlite3://user:passwd@host:9900/mydatabase/mytable
-N256

parallel --profile savesql <analytics_process> ::: <1m args>



Multiple Config Profiles may be used together

• cat ~/.parallel/benice
--nice 17 
-N100
--timeout 300%

• cat ~/.parallel/dryv
--vv # useful when used with ssh
--dry-run

• parallel --profile benice --profile dryv <heavy_process> ::: 
<args>

28



Part 4: Features and Examples - II
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Resource Management 

• --load: To avoid overloading systems, look at the load before starting 
another job.
parallel --load 100% echo ::: “Load less than 1 job per CPU” 

• --noswap: Check if the system is swapping and run only when not.
parallel --noswap echo ::: “System is not swapping now”

• --memfree: Run only when enough memory is free.
parallel --memfree 1G --retries 5 echo ::: “1G is free now.”
note: max memory is the “available” on the free command

• --delay <x.y> adds x.y sec delay in dispatching tasks to 
prevent overwhelming the system
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Combine Data and GNU Parallel in One Script

• With the --shebang flag like so:
#!/usr/bin/parallel --shebang -r echo

data_item1
data_item2
data_item3

• Parallelize existing scripts with --shebang-wrap
#!/usr/bin/parallel --shebang-wrap /bin/bash
echo “Arguments $@”

chmod u+x parbash.sh
./parbash.sh 1 2 3
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Working with Remote Systems over SSH
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• General Syntax:
parallel -S server1,server2 commands flags ::: args

• Example:
parallel -S u@vm1.org,u@vm2.org "hostname; echo {}" ::: foo bar
--sshloginfile flag allows to read the remote ssh config from a file, eg. 
.ssh/config

• Remote ssh hosts may be divided into groups and jobs may be selectively 
run on them:
parallel --hostgroup -S @grp1/$server1 -S @grp2/$server2 \
 echo {} ::: run_on_grp1@grp1 run_on_grp2@grp2



GNU parallel can transfer data to / from 
remote

• --transferfile to transfer files. Uses rsync to do transfer
• --return to return files from remote via rsync
• --cleanup to remove files from remote once job is done
echo “This is input file” > input_file
parallel -S remote_server --transferfile {} cat ::: 
input_file
echo “This is input file” > input_file
parallel -S $remote_server1 --transferfile {} --return 
{}.out cat {} “>” {}.out ::: input_file

• --trc to combine the three options (--transferfile, --return, 
and --cleanup)
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Real-World Examples working with ssh I
• parallel -S 
rage1,rage4,rage7,rage8,rage9,rage10,rage11,rage12 
${scan_cmd} ::: \
${scan_path}/{44..51} \
>> scanperf.8proc.8node.out

• parallel -S rage4 --jobs 30 'nats -s rage2:4222 \
pub migration.files.request --count 1 \
"{\"path\": \"/lustre/crius/migagenttests/{1}/file.{2}\"}”’\ 
::: {0..63} ::: {1..3000}
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Real-world examples working with ssh II
• parallel -S rage4 --jobs 30 "touch -d '-1 week’\ 
/lustre/crius/{1}/file.{2}" ::: {0..63} ::: {1..3000}

• parallel -k -S \ 
rage1,rage2,rage4,rage5,rage6,rage7,rage8,rage9 \
/lustre/crius/scripts/measure_lfsfind.sh ::: {28..35} \
>> lfsfindperf.8proc.8node.out
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The Pipe Mode to Process Large Data I

• When data is sent over a Linux pipe to parallel command, it is treated 
as arguments for command to run:
cat data.txt | parallel echo

• In the pipe mode, the data is delivered to the parallel command as 
standard input aka stdin:
cat data.txt | parallel --pipe wc -l

• The “--pipe” input may be controlled for block-size / number of lines 
and number of jobs:
cat data.txt |\
  parallel --pipe --block 2M -j4 --round-robin wc -l

37



The Pipe Mode to Process Large Data II [1]

• --pipepart may be used when using large data. Same as pipe but 
faster, has a few limitations [2]

• --recend <string> splits record at this string
• --line-buffer may be used to buffer output by line
parallel -a <file.json> --pipepart --keep-order 

       --line-buffer --block 100M --recend '}\n' "jq <query>"

[1] thenybble.de/posts/json-analysis/
[2] www.gnu.org/software/parallel/parallel_design.html#pipepart-vs-
pipe
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Part 5: HPC and GNU Parallel
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A SLURM Workload Manager Primer I
• salloc

Obtain a job allocation.
• sbatch

Submit a batch script for later execution.
• srun

Obtain a job allocation (as needed) and execute an application. Option we 
will use: --wait=0 means do not terminate other tasks if one finishes

• squeue
View information about jobs.

• sinfo
View information about nodes and partitions.
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A SLURM Workload Manager Primer II
• At runtime, SLURM offers several environment variables that could 

be leveraged to steer executions:
• $SLURM_NTASKS

Same as -n, –ntasks. The number of tasks.
• $SLURM_CPUS_PER_TASK

Number of CPUs per task.
• $SLURM_NODEID

The node id of the current node. Starts from 0.
• $SLURM_NNODES

Total nodes allocated to current job.
• $SLURM_NODELIST

A list of nodes allocated to current job.
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srun parallel vs parallel srun?
srun="srun --exclusive -N1 -n1 -c1"
parallel -j $SLURM_NTASKS "$srun ./runtask.sh {1}" ::: 
{1..112}

vs
srun --ntasks-per-node=1 parallel -j $cores_per_node 
app_invocation

Consensus: srun ... parallel ...
Reasons:
1. Higher overhead in invoking multiple srun allocations
2. Leveraging SLURM’s srun and environment variables
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Working with HPC Schedulers: SLURM, 1 node

#!/bin/bash

#SBATCH -J singlenode
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH -t 0:10:00
#SBATCH -N 1

srun parallel --jobs 8 ./payload.sh argument_{} :::: 
input.txt

43
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Using --dry-run to generate parallel 
commands

#SBATCH --job-name=parallel_job
#SBATCH ... 

find infiles/*.txt | parallel --dry-run ./process_data {} 
>commands.txt

##OR

find infiles/*.txt | parallel --dry-run Rscript 
R_array_test.R {} >commands.txt

parallel -j $SLURM_NTASKS < commands.txt
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Multinode Execution in SLURM
#!/bin/bash

#SBATCH -J multinode
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH -t 0:20:00
#SBATCH -p batch
#SBATCH -N 4

srun --no-kill --ntasks-per-node=1 --wait=0 driver.sh $1 
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Driver and Payload codes
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# Deliver tasks depending on the nodeid
cat $1 |                                               \
awk -v NNODE="$SLURM_NNODES" -v NODEID="$SLURM_NODEID" \
'NR % NNODE == NODEID' |                               \
parallel ./payload.sh argument_{}

#!/bin/bash

H="$(hostname)"
echo “This is the payload script. \
$1 is the argument passed to it. Ran on machine $H.”



Part 6: Asynchronous Workflow Execution
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Asynchronous Execution of Workflows
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process1 process2inputs outputs

proc1.sh:
#!/bin/bash
sleep $(shuf -i 20-60 -n 1)
shuf $1 > ./out/proc_$(basename $1)
echo "./out/proc_$(basename $1)" >> jobqueue

proc2.sh:
#!/bin/bash
shuf $1 > ./out/f_$(basename $1)
echo "Done for $1”

workflow.sh:
#!/bin/bash
parallel ./proc1.sh {} ::: ./inputs/*.txt &
>jobqueue; tail -n+0 -f jobqueue | parallel -u ./proc2.sh {}



A DAG Workflow Example

• Six processes
• Data dependencies
• May work independently with file 

inputs
• Branch Parallelism
• Asynchronous execution desired 

when multiple inputs

49



Sequential Bash Script Representation for 
one set of inputs

#!/bin/bash

p1/p1.sh inputs/in1.txt 
p1/out1.txt

p2/p2.sh p1/out1.txt p2/out2.txt

p3/p3.sh p1/out1.txt p3/out3.txt

p4/p4.sh p2/out2.txt p4/out4.txt

p5/p5.sh p3/out3.txt p5/out5.txt

p6/p6.sh p4/out4.txt p5/out5.txt 
outputs/out6.txt
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#!/bin/bash

#p1.sh
if test "$#" != 2 ; then
    echo "wrong 
invocation..exiting."
    exit 3
fi
if [ -f "$2" ] ; then
    rm -v "$2"
fi
cat $1 >> $2 || exit
echo "processed by p1" >> $2
echo "$2" >> ./q.p1

Sources available in src/crystalworkflow



GNU Parallel version
#!/bin/bash

mkdir -p p{1..5}/outdir outputs

parallel --link p1/p1.sh {1} {2} ::: inputs/in{1..6}.txt ::: 
p1/outdir/out{1..6}.txt &

touch q.p1 ; tail -n+0 -f q.p1 | parallel -u --link p2/p2.sh {1} {2} :::: - ::: 
p2/outdir/out{1..6}.txt &

touch q.p1 ; tail -n+0 -f q.p1 | parallel -u --link p3/p3.sh {1} {2} :::: - ::: 
p3/outdir/out{1..6}.txt &

touch q.p2 ; tail -n+0 -f q.p2 | parallel -u --link p4/p4.sh {1} {2} :::: - ::: 
p4/outdir/out{1..6}.txt &

touch q.p3 ; tail -n+0 -f q.p3 | parallel -u --link p5/p5.sh {1} {2} :::: - ::: 
p5/outdir/out{1..6}.txt & 

(stdbuf -oL paste <(touch q.p4 ; tail -n+0 -f q.p4) <(touch q.p5 ; tail -n+0 -f 
q.p5)) | parallel -u --link p6/p6.sh :::: - ::: outputs/out{1..6}.txt
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Part 7: A Real Application
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A Real Application: Bioinformatics

• HMMER3 Takes a protein sequence and compares it to a probabilistic 
profile that describes a protein domain.
• It reports when there is a statistically significant likelihood that the 

protein and the domain share the same evolutionary origin.
• This basic comparison is repeated for all combinations of many 

protein sequences and many domains.
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hmmsearch

hmm_lib

fasta.in out.txtfasta.infasta.infasta.in
out.txt

out.txt



Download App Package and Data

• Download the hmmsearch package: hmmer.org/download.html
wget http://eddylab.org/software/hmmer/hmmer-3.4.tar.gz

• Download the protein HMM searchable library here: 
wget ftp.ebi.ac.uk/pub/databases/Pfam/current_release/Pfam-
A.hmm.dat.gz

• Download the fasta file:
wget 
https://ftp.uniprot.org/pub/databases/uniprot/current_releas
e/knowledgebase/complete/uniprot_sprot.fasta.gz
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Install the hmmsearch package
• tar zxf hmmer-3.4.tar.gz 
• cd hmmer-3.4/
• ./configure --prefix=$PWD/install
... output ...
HMMER configuration:

   compiler:     gcc -O3    -pthread 
   host:         x86_64-pc-linux-gnu
   linker:               
   libraries:    -lpthread
   DP implementation:    sse
• make -j install  # hmmer will be installed.
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gunzip and split the Fasta File
gunzip uniprot_sprot.fasta.gz 

awk -v chunksize=$(grep ">" uniprot_sprot.fasta -c) 
'BEGIN{n=0; chunksize=int(chunksize/256)+1 } 
/^>/ {
       if(n%chunksize==0){
         file=sprintf("uniprot_%d.fasta",1+(n%256));
       } 
       print >> file; n++; next;
     }
{ print >> file; }' < uniprot_sprot.fasta
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Part 8: Putting it all Together
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HMMSearch Command line
hmmsearch --cpu 8 --noali -o output.txt \

                             Pfam-A.hmm input.fasta

ls | head -3

uniprot_100.fasta

uniprot_101.fasta

uniprot_102.fasta

find $PWD -type f | grep fasta > inputs.txt
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First Approach: srun ... parallel

srun --no-kill --ntasks-per-node=1 --wait=0

parallel -j 8 $HOME/hmmer-3.3/install/bin/hmmsearch 

--cpu 4 --noali -o {//}/output_{/}.txt 

$SCRATCH/Pfam-A.hmm {} :::: inputs.txt
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Second Approach: Distribute Tasks

#driver.sh
cat inputs.txt |awk -v NNODE="$SLURM_NNODES" -v 
NODEID="$SLURM_NODEID" \ 'NR % NNODE == NODEID’ | 
parallel ./payload.sh {}

60

#payload.sh [untested]
$HOME/hmmer-3.3/install/bin/hmmsearch 
--cpu 4 --noali -o {//}/output_{/}.txt 
$SCRATCH/Pfam-A.hmm $1



Summary

• GNU Parallel is an effective tool that could be useful in 
day-to-day tasks on the terminal as well as for larger workflows
• Many options to choose from to customize a parallel operation
• Very handy for quick prototyping
• May be well suited for some production level work
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Practice and Exercises : Titanic Data Challenge

Data: in Github, Titanic.csv 
• Problem 1. What characteristics are shared by all passengers whose fare is 

0?
• Problem 2. How many married women over age 50 embarked in Cherbourg? 

(Married women are denoted by "Mrs.")
• Problem 3. Which embarkation city had the highest-paying passengers on 

average?
• Problem 4. What is the most common last name among passengers? What is 

the average number of passengers per last name?
• Problem 5. What's the survival rate for passengers in the three different 

classes, i.e., what fraction of passengers in each class survived?
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Practice and Exercises : MIT Datacenter 
Challenge

• dcc.mit.edu A 2.6T dataset pertaining to cluster operations
• Partial data available on Github at data/datacenter-challenge 
• Although geared towards AI based models, GNU Parallel could help 

gain insight on patterns from existing data
• Scheduling Characterization
• Workload Characterization
• File System Characterization
• Error Characterization
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• docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/running-
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Other Possible Venues to look for challenges

• data/sales-data.csv
• annas-blog.org/worldcat-scrape.html
• smc-datachallenge.ornl.gov
• www.reddit.com/r/DataHoarder
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Thank you for your time and attention
Questions?

km0@ornl.gov
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