
Scientific Workflows at scale
using GNU Parallel

Ketan Maheshwari (km0@ornl.gov)
Oak Ridge National Laboratory

Tutorial presented at eScience 2023

1

Acknowledgements
This work used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

I acknowledge the original developer and maintainer of GNU parallel, Ole Tange for the gift
of a wonderful tool!

A previous shorter version of this tutorial was presented as part of the Workflows
Community Initiative1 Cross-Facility Workflows Tutorials. I acknowledge William Arndt from
NERSC / LBNL for his contributions to the tutorial.

I thank the eScience Tutorial committee and chairs for providing this opportunity.

1 https://workflows.community 2

https://workflows.community/

Table of Contents
• Part 1: Overview and Logistics
• Part 2: Introduction to GNU Parallel
• Part 3: Features and Examples-I
• Part 4: Features and Examples-II
• Part 5: HPC and GNU Parallel
• Part 6: Asynchronous Workflow Execution
• Part 7: A Real Application
• Part 8: Putting it All Together
• Summary
• Practice and Exercises (if time permits else offline)

3

Part 1: Overview and Logistics

4

back to toc

Overview: What shall we learn
• Familiarize with GNU Parallel features
• How to utilize HPC with GNU Parallel
• Resource Management
• Working with multicore architectures

• Running workflow tasks asynchronously
• Data dependencies and Parallelism

• Strategies to run applications and production tasks with GNU Parallel

5

Slides and Practice Data for Download

• Slides and practice files available:

github.com/ketancmaheshwari/escience23tut

tinyurl.com/4v4b8pch

/data has data used for exercises.
/src has code discussed in the tutorial (except the one liners).

6

https://github.com/ketancmaheshwari/escience23tut
https://tinyurl.com/4v4b8pch

About You and Me

• Basic exposure to Linux is assumed but feel free to interrupt and ask
questions
• common commands, basic understanding of files and directories, process.

eg. cd, ls, pwd, cat, date, seq

• About Me
• Sr. Linux Engineer at Oak Ridge National Laboratory
• Command line and Linux terminal enthusiast

7

About the Slides

• 8 Parts, each part has 4-10 slides
• Lots of examples in slides
• Summary and Practice Exercises

We try to solve them here (if time permits)

• Solve it offline if we run out of time
• Plan to publish solutions around Nov 10, 2023, on Github

8

Part 2: Introduction to GNU Parallel

9

back to toc

What is GNU Parallel

• A terminal tool to parallelize processes
• Easy to install, highly configurable
• Well suited to run many single-core / single-thread tasks on:
• Compute nodes leveraging multicore architectures
• Bag of workstations such as testbeds
• Works well with Resource Managers and Job Schedulers

• Mature (20 years old), Simple and Powerful!

10

Installation
• Download the latest version:
curl -s https://ftp.gnu.org/gnu/parallel/parallel-
latest.tar.bz2 -o parallel-latest.tar.bz2

• Untar and cd into it:
tar zxf parallel-latest.tar.bz2
cd parallel-20230822

• Install:
./configure --prefix=$HOME/parallel-install
make install # needs libevent

• Set PATH and it is ready to go:
export PATH=$HOME/parallel-install/bin:$PATH
which parallel

11

Many sources for getting help

• link to youtube videos by Ole Tange: www.pi.dk/1
• www.gnu.org/software/parallel/parallel_cheat.pdf
• Searching for “gnu parallel” on Hacker news, Reddit, Stack Exchange

yields many helpful links
man parallel

man parallel_tutorial

parallel --help # summary of most imp options

parallel --max-line-length-allowed # max size of cmdline

parallel --number-of-cpus && parallel --number-of-cores

12

http://www.pi.dk/1
http://www.gnu.org/software/parallel/parallel_cheat.pdf

Anatomy of a GNU Parallel Command

parallel -j 8 wc -l ::: /etc/*.conf

13

argument

triple colon arg sep

options command

Another Form of the same command

\ls -1 /etc/*.conf | parallel -j8 wc -l

14

pipe

Aside1: Command line Navigation

15

parallel --filter '{1} < {2}' echo {1} {2} ::: {37..43} ::: {37..43}

cursor ctrl-ectrl-a / ctrl-xx

alt-falt-b

MAC users: terminal pref > profile > keyboard settings > Use option as meta key

ctrl-alt-] <char> moves cursor to 1st occurrence of <char> to left

ctrl-] <char> moves cursor to 1st occurrence of <char> to right

Aside2: command line Deletion

16

inotifywait -qmre MOVED_TO -e CLOSE_WRITE --format %w%f ./data | parallel -u echo

cursor
ctrl-kctrl-u

ctrl-w alt-d

use ctrl-y to paste back the deleted

GNU Parallel Alternatives

• xargs, make -j, find + exec, and others are often cited
as alternatives

• A comparison is made and summaries available:
 gnu.org/software/parallel/parallel_alternatives.html

• An insightful read, though it may or may not be unbiased! J

17

http://gnu.org/software/parallel/parallel_alternatives.html

Part 3: Features and Examples - I

18

back to toc

Basic Syntax and Semantics
Triple colon: Run <command> in parallel for each of the input parameters:
parallel [options] <command> ::: <args>

Quad colon: Run <command> in parallel for each line in input file; -a is alternative syntax to
quad colon
parallel [options] <command> :::: <input_file>
parallel [options] -a <input_file> <command>

Semantics: Run <command1> in parallel for each line of the standard output from
<command0> as arg

<command0> | parallel [options] <command1>

19

Examples

20

● Triple colon:
parallel echo ::: {1..4}
parallel du -h ::: */*
May use -N0 when no commands have no arguments (still need to provide :::)
parallel -N0 date ::: xyz

● Quadruple colon:
parallel echo :::: /etc/passwd
parallel -a /etc/passwd echo # same as above

● Another example of the pipe form:

find /somedir/subdir -iname ’*.txt’ -print | parallel echo
“File: “

Examples

21

• With multiple ::: all combinations will be generated
parallel echo ::: A B C ::: 1 2 3

is equivalent to a nested for loop:

for i in A B C; do
 for j in 1 2 3; do
 echo $i $j
 done
done

• --link to map the args 1:1:
parallel --link echo ::: A B C ::: 1 2 3

Examples
● Use {[n]} to put nth set of arguments in multiple commands / args:

parallel “mkdir -p /tmp/dir.{1} ; fallocate -l 1K
/tmp/dir.{1}/file.{2}” ::: {1..4} ::: {a..d}

● Other patterns may be put in {} to treat args in special ways:
{.} remove extension, eg. /tmp/afile.txt --> /tmp/afile
{/} extracts just the filename, eg. /tmp/afile.txt --> afile.txt

{#} sequence number of the job
{%} slot number of the job

parallel echo "sequence {#} slot {%}" ::: {1..100}
parallel echo {2.} {1} ::: 1 2 ::: afile.txt bpic.png

22

Highly Configurable I

23

● --keep-order/-k will ensure the output order is preserved
parallel -k “sleep {} ; echo {}” ::: {5..1}

● --jobs/-j to control the job slots (limited by available cores)
parallel -j 2 echo ::: 5 4 3 1 2
0 means as many jobs as possible, default is all cores on a machine. May be provided as %.
Silently ignores if value is greater than cores available.

● -N to limit the arguments received at a time
parallel -N3 echo ::: {A..F}
A B C
D E F

Highly Configurable II

24

● --timeout: kill a job if it takes more than a certain time (sec)
parallel --timeout 1000 ./runtask ::: {1..100}

may be specified as a percentage value of the median runtime (<100% won’t make sense)
parallel --timeout 200% ./runtask ::: {1..100}

● --progress, --eta, --bar: show progress of a run, in terms of estimated time, tasks,
nodes etc.

● --wd <dirlocation>: provide a working directory (cwd) for commands

● --dry-run: show what will run in standard output but will not run anything, very useful

Checkpoint and Resume

25

--joblog, --resume: Allows for monitoring progress, checkpointing
and resuming an interrupted / partially failed run

parallel -j 16 -N 100 --joblog /tmp/job.log --resume
gzip {} :::: filelist.txt

Additionally, --retry-failed (reads from log) and --resume-
failed (resumes afresh) to try failed jobs again.

Saving Output in Files, Variables,
Databases

• Outputs may be saved in files:
parallel --files echo ::: A B C # will be saved in /tmp

• Saving output in CSV file:
parallel --results my.csv echo ::: A B ::: C D

• Saving to an SQL database:
DBURL=sqlite3:///mydatabase; TABLE=$DBURL/mytable
parallel --sqlandworker $TABLE echo ::: A B ::: C D

• Saving to shell variables:
env_parallel --install # activate parset, restart shell
parset myvar1,myvar2 -j2 echo ::: a b
echo $myvar1 $myvar2

26

Config Profiles I

27

• Specific configuration profiles may be saved in files and used in
combinations:
/etc/parallel/config for systemwide configuration
~/.parallel/config for user-level configuration which will override
systemwide:

$ cat ~/.parallel/savesql
--sqlandworker sqlite3://user:passwd@host:9900/mydatabase/mytable
-N256

parallel --profile savesql <analytics_process> ::: <1m args>

Multiple Config Profiles may be used together

• cat ~/.parallel/benice
--nice 17
-N100
--timeout 300%

• cat ~/.parallel/dryv
--vv # useful when used with ssh
--dry-run

• parallel --profile benice --profile dryv <heavy_process> :::
<args>

28

Part 4: Features and Examples - II

29

back to toc

Resource Management

• --load: To avoid overloading systems, look at the load before starting
another job.
parallel --load 100% echo ::: “Load less than 1 job per CPU”

• --noswap: Check if the system is swapping and run only when not.
parallel --noswap echo ::: “System is not swapping now”

• --memfree: Run only when enough memory is free.
parallel --memfree 1G --retries 5 echo ::: “1G is free now.”
note: max memory is the “available” on the free command

• --delay <x.y> adds x.y sec delay in dispatching tasks to
prevent overwhelming the system

30

Combine Data and GNU Parallel in One Script

• With the --shebang flag like so:
#!/usr/bin/parallel --shebang -r echo

data_item1
data_item2
data_item3

• Parallelize existing scripts with --shebang-wrap
#!/usr/bin/parallel --shebang-wrap /bin/bash
echo “Arguments $@”

chmod u+x parbash.sh
./parbash.sh 1 2 3

31

Working with Remote Systems over SSH

32

• General Syntax:
parallel -S server1,server2 commands flags ::: args

• Example:
parallel -S u@vm1.org,u@vm2.org "hostname; echo {}" ::: foo bar
--sshloginfile flag allows to read the remote ssh config from a file, eg.
.ssh/config

• Remote ssh hosts may be divided into groups and jobs may be selectively
run on them:
parallel --hostgroup -S @grp1/$server1 -S @grp2/$server2 \
 echo {} ::: run_on_grp1@grp1 run_on_grp2@grp2

GNU parallel can transfer data to / from
remote

• --transferfile to transfer files. Uses rsync to do transfer
• --return to return files from remote via rsync
• --cleanup to remove files from remote once job is done
echo “This is input file” > input_file
parallel -S remote_server --transferfile {} cat :::
input_file
echo “This is input file” > input_file
parallel -S $remote_server1 --transferfile {} --return
{}.out cat {} “>” {}.out ::: input_file

• --trc to combine the three options (--transferfile, --return,
and --cleanup)

33

Real-World Examples working with ssh I
• parallel -S
rage1,rage4,rage7,rage8,rage9,rage10,rage11,rage12
${scan_cmd} ::: \
${scan_path}/{44..51} \
>> scanperf.8proc.8node.out

• parallel -S rage4 --jobs 30 'nats -s rage2:4222 \
pub migration.files.request --count 1 \
"{\"path\": \"/lustre/crius/migagenttests/{1}/file.{2}\"}”’\
::: {0..63} ::: {1..3000}

34

Real-world examples working with ssh II
• parallel -S rage4 --jobs 30 "touch -d '-1 week’\
/lustre/crius/{1}/file.{2}" ::: {0..63} ::: {1..3000}

• parallel -k -S \
rage1,rage2,rage4,rage5,rage6,rage7,rage8,rage9 \
/lustre/crius/scripts/measure_lfsfind.sh ::: {28..35} \
>> lfsfindperf.8proc.8node.out

35

36

To be presented at PDSW’23 at SC’23

The Pipe Mode to Process Large Data I

• When data is sent over a Linux pipe to parallel command, it is treated
as arguments for command to run:
cat data.txt | parallel echo

• In the pipe mode, the data is delivered to the parallel command as
standard input aka stdin:
cat data.txt | parallel --pipe wc -l

• The “--pipe” input may be controlled for block-size / number of lines
and number of jobs:
cat data.txt |\
 parallel --pipe --block 2M -j4 --round-robin wc -l

37

The Pipe Mode to Process Large Data II [1]

• --pipepart may be used when using large data. Same as pipe but
faster, has a few limitations [2]

• --recend <string> splits record at this string
• --line-buffer may be used to buffer output by line
parallel -a <file.json> --pipepart --keep-order

 --line-buffer --block 100M --recend '}\n' "jq <query>"

[1] thenybble.de/posts/json-analysis/
[2] www.gnu.org/software/parallel/parallel_design.html#pipepart-vs-
pipe

38

https://thenybble.de/posts/json-analysis/
http://www.gnu.org/software/parallel/parallel_design.html
http://www.gnu.org/software/parallel/parallel_design.html

Part 5: HPC and GNU Parallel

39

back to toc

A SLURM Workload Manager Primer I
• salloc

Obtain a job allocation.
• sbatch

Submit a batch script for later execution.
• srun

Obtain a job allocation (as needed) and execute an application. Option we
will use: --wait=0 means do not terminate other tasks if one finishes

• squeue
View information about jobs.

• sinfo
View information about nodes and partitions.

40

A SLURM Workload Manager Primer II
• At runtime, SLURM offers several environment variables that could

be leveraged to steer executions:
• $SLURM_NTASKS

Same as -n, –ntasks. The number of tasks.
• $SLURM_CPUS_PER_TASK

Number of CPUs per task.
• $SLURM_NODEID

The node id of the current node. Starts from 0.
• $SLURM_NNODES

Total nodes allocated to current job.
• $SLURM_NODELIST

A list of nodes allocated to current job.

41

srun parallel vs parallel srun?
srun="srun --exclusive -N1 -n1 -c1"
parallel -j $SLURM_NTASKS "$srun ./runtask.sh {1}" :::
{1..112}

vs
srun --ntasks-per-node=1 parallel -j $cores_per_node
app_invocation

Consensus: srun ... parallel ...
Reasons:
1. Higher overhead in invoking multiple srun allocations
2. Leveraging SLURM’s srun and environment variables

42

Working with HPC Schedulers: SLURM, 1 node

#!/bin/bash

#SBATCH -J singlenode
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH -t 0:10:00
#SBATCH -N 1

srun parallel --jobs 8 ./payload.sh argument_{} ::::
input.txt

43

code in Github: src/singlenode

Using --dry-run to generate parallel
commands

#SBATCH --job-name=parallel_job
#SBATCH ...

find infiles/*.txt | parallel --dry-run ./process_data {}
>commands.txt

##OR

find infiles/*.txt | parallel --dry-run Rscript
R_array_test.R {} >commands.txt

parallel -j $SLURM_NTASKS < commands.txt

44

Multinode Execution in SLURM
#!/bin/bash

#SBATCH -J multinode
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH -t 0:20:00
#SBATCH -p batch
#SBATCH -N 4

srun --no-kill --ntasks-per-node=1 --wait=0 driver.sh $1

45

code in Github: src/multinode

Driver and Payload codes

46

Deliver tasks depending on the nodeid
cat $1 | \
awk -v NNODE="$SLURM_NNODES" -v NODEID="$SLURM_NODEID" \
'NR % NNODE == NODEID' | \
parallel ./payload.sh argument_{}

#!/bin/bash

H="$(hostname)"
echo “This is the payload script. \
$1 is the argument passed to it. Ran on machine $H.”

Part 6: Asynchronous Workflow Execution

47

back to toc

Asynchronous Execution of Workflows

48

process1 process2inputs outputs

proc1.sh:
#!/bin/bash
sleep $(shuf -i 20-60 -n 1)
shuf $1 > ./out/proc_$(basename $1)
echo "./out/proc_$(basename $1)" >> jobqueue

proc2.sh:
#!/bin/bash
shuf $1 > ./out/f_$(basename $1)
echo "Done for $1”

workflow.sh:
#!/bin/bash
parallel ./proc1.sh {} ::: ./inputs/*.txt &
>jobqueue; tail -n+0 -f jobqueue | parallel -u ./proc2.sh {}

A DAG Workflow Example

• Six processes
• Data dependencies
• May work independently with file

inputs
• Branch Parallelism
• Asynchronous execution desired

when multiple inputs

49

Sequential Bash Script Representation for
one set of inputs

#!/bin/bash

p1/p1.sh inputs/in1.txt
p1/out1.txt

p2/p2.sh p1/out1.txt p2/out2.txt

p3/p3.sh p1/out1.txt p3/out3.txt

p4/p4.sh p2/out2.txt p4/out4.txt

p5/p5.sh p3/out3.txt p5/out5.txt

p6/p6.sh p4/out4.txt p5/out5.txt
outputs/out6.txt

50

#!/bin/bash

#p1.sh
if test "$#" != 2 ; then
 echo "wrong
invocation..exiting."
 exit 3
fi
if [-f "$2"] ; then
 rm -v "$2"
fi
cat $1 >> $2 || exit
echo "processed by p1" >> $2
echo "$2" >> ./q.p1

Sources available in src/crystalworkflow

GNU Parallel version
#!/bin/bash

mkdir -p p{1..5}/outdir outputs

parallel --link p1/p1.sh {1} {2} ::: inputs/in{1..6}.txt :::
p1/outdir/out{1..6}.txt &

touch q.p1 ; tail -n+0 -f q.p1 | parallel -u --link p2/p2.sh {1} {2} :::: - :::
p2/outdir/out{1..6}.txt &

touch q.p1 ; tail -n+0 -f q.p1 | parallel -u --link p3/p3.sh {1} {2} :::: - :::
p3/outdir/out{1..6}.txt &

touch q.p2 ; tail -n+0 -f q.p2 | parallel -u --link p4/p4.sh {1} {2} :::: - :::
p4/outdir/out{1..6}.txt &

touch q.p3 ; tail -n+0 -f q.p3 | parallel -u --link p5/p5.sh {1} {2} :::: - :::
p5/outdir/out{1..6}.txt &

(stdbuf -oL paste <(touch q.p4 ; tail -n+0 -f q.p4) <(touch q.p5 ; tail -n+0 -f
q.p5)) | parallel -u --link p6/p6.sh :::: - ::: outputs/out{1..6}.txt

51

Part 7: A Real Application

52

back to toc

A Real Application: Bioinformatics

• HMMER3 Takes a protein sequence and compares it to a probabilistic
profile that describes a protein domain.
• It reports when there is a statistically significant likelihood that the

protein and the domain share the same evolutionary origin.
• This basic comparison is repeated for all combinations of many

protein sequences and many domains.

53

hmmsearch

hmm_lib

fasta.in out.txtfasta.infasta.infasta.in
out.txt

out.txt

Download App Package and Data

• Download the hmmsearch package: hmmer.org/download.html
wget http://eddylab.org/software/hmmer/hmmer-3.4.tar.gz

• Download the protein HMM searchable library here:
wget ftp.ebi.ac.uk/pub/databases/Pfam/current_release/Pfam-
A.hmm.dat.gz

• Download the fasta file:
wget
https://ftp.uniprot.org/pub/databases/uniprot/current_releas
e/knowledgebase/complete/uniprot_sprot.fasta.gz

54

http://hmmer.org/download.html

Install the hmmsearch package
• tar zxf hmmer-3.4.tar.gz
• cd hmmer-3.4/
• ./configure --prefix=$PWD/install
... output ...
HMMER configuration:

 compiler: gcc -O3 -pthread
 host: x86_64-pc-linux-gnu
 linker:
 libraries: -lpthread
 DP implementation: sse
• make -j install # hmmer will be installed.

55

gunzip and split the Fasta File
gunzip uniprot_sprot.fasta.gz

awk -v chunksize=$(grep ">" uniprot_sprot.fasta -c)
'BEGIN{n=0; chunksize=int(chunksize/256)+1 }
/^>/ {
 if(n%chunksize==0){
 file=sprintf("uniprot_%d.fasta",1+(n%256));
 }
 print >> file; n++; next;
 }
{ print >> file; }' < uniprot_sprot.fasta

56

Part 8: Putting it all Together

57

back to toc

HMMSearch Command line
hmmsearch --cpu 8 --noali -o output.txt \

 Pfam-A.hmm input.fasta

ls | head -3

uniprot_100.fasta

uniprot_101.fasta

uniprot_102.fasta

find $PWD -type f | grep fasta > inputs.txt

58

First Approach: srun ... parallel

srun --no-kill --ntasks-per-node=1 --wait=0

parallel -j 8 $HOME/hmmer-3.3/install/bin/hmmsearch

--cpu 4 --noali -o {//}/output_{/}.txt

$SCRATCH/Pfam-A.hmm {} :::: inputs.txt

59

Second Approach: Distribute Tasks

#driver.sh
cat inputs.txt |awk -v NNODE="$SLURM_NNODES" -v
NODEID="$SLURM_NODEID" \ 'NR % NNODE == NODEID’ |
parallel ./payload.sh {}

60

#payload.sh [untested]
$HOME/hmmer-3.3/install/bin/hmmsearch
--cpu 4 --noali -o {//}/output_{/}.txt
$SCRATCH/Pfam-A.hmm $1

Summary

• GNU Parallel is an effective tool that could be useful in
day-to-day tasks on the terminal as well as for larger workflows
• Many options to choose from to customize a parallel operation
• Very handy for quick prototyping
• May be well suited for some production level work

61

back to toc

Practice and Exercises : Titanic Data Challenge

Data: in Github, Titanic.csv
• Problem 1. What characteristics are shared by all passengers whose fare is

0?
• Problem 2. How many married women over age 50 embarked in Cherbourg?

(Married women are denoted by "Mrs.")
• Problem 3. Which embarkation city had the highest-paying passengers on

average?
• Problem 4. What is the most common last name among passengers? What is

the average number of passengers per last name?
• Problem 5. What's the survival rate for passengers in the three different

classes, i.e., what fraction of passengers in each class survived?

62

Practice and Exercises : MIT Datacenter
Challenge

• dcc.mit.edu A 2.6T dataset pertaining to cluster operations
• Partial data available on Github at data/datacenter-challenge
• Although geared towards AI based models, GNU Parallel could help

gain insight on patterns from existing data
• Scheduling Characterization
• Workload Characterization
• File System Characterization
• Error Characterization

63

https://dcc.mit.edu/

Credits, references and resources
• gnu.org/software/parallel
• rcc.uchicago.edu/documentation/_build/html/running-jobs/srun-parallel/index.html
• ulhpc-tutorials.readthedocs.io/en/latest/sequential/basics
• docs.ycrc.yale.edu/clusters-at-yale/guides/parallel
• www.vanderbilt.edu/accre/documentation/parallel
• docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/running-

your-jobs/gnu-parallel
• omgenomics.com/parallel
• curc.readthedocs.io/en/latest/software/GNUParallel.html
• thenybble.de/posts/json-analysis
• stackoverflow.com/questions/tagged/gnu-parallel
• unix.stackexchange.com/questions/tagged/gnu-parallel

64

http://www.gnu.org/software/bash/manual/bashref.html
https://rcc.uchicago.edu/documentation/_build/html/running-jobs/srun-parallel/index.html
https://ulhpc-tutorials.readthedocs.io/en/latest/sequential/basics/
https://docs.ycrc.yale.edu/clusters-at-yale/guides/parallel/
https://www.vanderbilt.edu/accre/documentation/parallel/
https://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/running-your-jobs/gnu-parallel/
https://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/running-your-jobs/gnu-parallel/
https://omgenomics.com/parallel/
https://curc.readthedocs.io/en/latest/software/GNUParallel.html
https://thenybble.de/posts/json-analysis
https://stackoverflow.com/questions/tagged/gnu-parallel
https://unix.stackexchange.com/questions/tagged/gnu-parallel

Other Possible Venues to look for challenges

• data/sales-data.csv
• annas-blog.org/worldcat-scrape.html
• smc-datachallenge.ornl.gov
• www.reddit.com/r/DataHoarder

65

https://annas-blog.org/worldcat-scrape.html
https://smc-datachallenge.ornl.gov/
https://www.reddit.com/r/DataHoarder/

Thank you for your time and attention
Questions?

km0@ornl.gov

66

