
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Vim script - I

Ketan Maheshwari

DLSW Group,

NCCS, ORNL

22 Open slide master to edit

Overview

• Introduction

• How to run a Vim script

• Language Features and Examples (LF&E)
– Basic
– Advanced

• Vim script usage (in part II)
– rc, syntax files
– plugins

• Summary and References

https://github.com/ketancmaheshwari/vim

33 Open slide master to edit

Introduction

• Vim

A popular text editor.

• Vim script
– A scripting language to control Vim:

rcfiles, colon commands, macros, plugins are all Vim scripts
– Interpreted, dynamic, partial runtime type checks
– Somewhat like python but has lots of quirks!🇳🇱
– Some features are simply mind blowing!🤯
– we will cover version <= 8 (I hear v9 has new features)

44 Open slide master to edit

How to run a Vim script

• Put the script in a .vimrc file and it will run when vim starts

• Type the script in ex (aka colon) mode
• source from within Vim :so %

• hashbang on top of script & chmod u+x the file
– #!/usr/bin/env vim -u
– #!/usr/bin/vim -u
– Make sure to put the quit command in the end else will end up in vim

• run lines selectively from yank buffer with :@”

55 Open slide master to edit

How to get help

• :help (or simply :h)
• :h [variables, function, E128, list, dict, ...]

• Documentation -- Vim’s doc game is top class!🤯

• Google / Stackexchange search returns relevant results

• Youtube has a few videos

66 Open slide master to edit

Language Features and Examples (LF&E) : Hello World!

MAC127024:vimscript km0$ cat hello.vim

#!/usr/bin/env vim -u

“This is a comment (only whole line comments allowed🇳🇱)
echo “Hello World!”
let msg = “Hello again!”
“echom saves message in message history
echom msg
“to quit from vim into terminal
quit

$ chmod u+x hello.vim
$./hello.vim

77 Open slide master to edit

LF&E: Variables

• :h variables

• Vim script has 10 types of variables:
string, number, float, list, dict, null, funcref, blob, job, channel

• Create a variable: let varname = value

• There is no char type

• Use type() to find variable type -- types are numerically
encoded (:h type) 🇳🇱
:echo type(42)

88 Open slide master to edit

LF&E: Variable Scoping (Namespace management) 🇳🇱

• By default, a variable is global - and it could be a problem

• Scoping is defined by prepending a scope identifier in front of
a variable name, g: for global, s: for script v: for vim specific

let g:name = “Mithun”
let s:temp = -24
if v:version < 700 | echo “upgrade!” | endif 🇳🇱

• Other scopes are a: for function arguments b: for local to a
buffer and w: for local to a window
“find currently defined variables
:let

| is used to separate commands in a line
Workaround to put comments on same line

99 Open slide master to edit

LF&E: Numbers

• Numbers are integers

• 3 kinds: Decimal, Octal and Hexadecimal
• Octal numbers are represented with a leading 0
011 != 11 🇳🇱

• Hex numbers represented with 0x or 0X

• However, echo will print them all in decimal 🇳🇱

• Cool way to convert from hex, octal to decimal or
do inter-base arithmetic
:echo 0xabc🤯
:echo 0x7f - 036

1010 Open slide master to edit

LF&E: Strings

• Concatenation: . is the string concatenation operator 🇳🇱
(. is a bit overloaded and is used in other contexts)

• String slicing like python:

let lestring=“Hello World”

echo lestring[0:4]
echo lestring[5:]
echo lestring[-3:]
echo lestring[:-4]

1111 Open slide master to edit

LF&E: Conditionals

let x = 100
if x%2 == 0
echom “even”

else
echom “odd”

endif
q

let n = 4
echo n > 5 ? “n is big” : “n is small”

• Three forms:
if endif, if else endif, if elseif endif

• 0 is false, everything else is true

• Ternary conditional expression like C

• str str comparison: byte values used

• str num comparison: If str don’t look like
number, they are converted to 0. 🇳🇱 if 0 == “one”

echom “True”
else
echom “False”

endif
q |“will print True

1212 Open slide master to edit

LF&E: Comparison operators🇳🇱

Operator Use ‘ignorecase’ Match case Ignore case
Equal == ==# ==?
Not equal != !=# !=?
Greater than > ># >?
Greater than or equal >= >=# >=?
Less than < <# <?
Less than or equal <= <=# <=?
Matches with =~ =~# =~?
Does not match !~ !~# !~?
Same instance is is# is?
Different instance isnot isnot# isnot?

1313 Open slide master to edit

LF&E: Loops

• while and for loops
are available

• break and continue
available and behave
as expected

“a multiplication table using while and for

let s:ctr=1
let s:n=13

while s:ctr <= 10
echo s:n.” X ”.s:ctr.“ = “.s:n*s:ctr
let s:ctr += 1

endwhile

”for loop
for s:i in range(11)
echo s:n.” X “.s:i.” = “.s:nX*s:I

endfor

1414 Open slide master to edit

LF&E: Lists

• Dynamic lists are
supported -- pretty
much like python

• Many builtin
functions to work
with lists, + for list
concat

• Looping through
lists is similar to
python

“lists and list operations
let alist = [] |”empty list
let blist = [‘foo’,’bar’,’baz’]

call add(alist, ‘baa’)
call add(alist, ‘moo’)
echo alist |”display list items

for n in blist
echo n

endfor

“len(), empty(), insert(), sort(),max()
reverse(),split(), join() etc. functions
available

1515 Open slide master to edit

LF&E: Dicts

• Dictionaries in Vim script look
similar to those in python

• Supported by numerous
functions

• Close integration with user-
defined functions (more soon)

“dicts and dict operations
let adict = {} |”empty dict
let bdict = {‘cow’:‘moo’,’crow’:’caw’}

echo bdict[‘crow’]
echo bdict.crow |”same as above

let bdict.sheep = ‘baa’ |”update dict

“iteration over a dict
echo “key => val”
for key in sort(keys(bdict))
echo key.”=>”.bdict[key]

endfor

1616 Open slide master to edit

Built-in functions 🤯

• Tons of builtin functions, following are just categories, each
category has 5-30 functions:
string manipulation, list manipulation, dict manipulation,
floating point computations, variables, cursor and mark
position, buffer manipulation, system functions, file
manipulation, date and time, windows and argument lists,
command line, syntax, spelling, highlight, mappings,
interactive, testing, ipc, timers, job, gui, misc.

• :h functions for an alphabetical list of all functions

1717 Open slide master to edit

LF&E: User Defined Functions

• User defined functions are allowed, by
default have a global scope but may
be made local to script with s:

• Functions may be called with call

• Function name must start with a
capital letter 🇳🇱

• :fun To find all the user defined
functions

function Min(n1, n2)
if a:n1 < a:n2
return a:n1

else
return a:n2

endif
endfunction

“redefine function
function! Min(n1, n2,
n3)
<body>

endfunction

1818 Open slide master to edit

LF&E: User Defined Functions (contd)

• Functions may have
a variable number
of arguments

• Those arguments
may be called and
used as a:1, a:2, ...
up to the value in
a:0 which holds the
total count of
arguments (max 20)
🇳🇱

“may be invoked with up to 20 more args
function Show(st, ...)
echo ”First arg is: “.a:st
let s:n = 1
echo “Rest of the args are:”
while s:n <= a:0
echo a:{s:n}
let s:n += 1

endwhile
endfunction

call Show(“Hello”, “Hi”, “Greetings”)

1919 Open slide master to edit

LF&E: Exception Handling try ... catch ... finally

• Similar to other languages

• An exception is simply a string
with an exception number
that catch will regex match🤯

• There maybe multiple catch
commands but only one
finally command

try
call Updatefile(“/tmp/data.txt”)

catch /E484:/
echo “Sorry file not found”

catch /E21:/
echo “Sorry file is not writable”

finally
call Wrapup(foobar)

endtry

2020 Open slide master to edit

Function Qualifiers

• Functions may be qualified
with terms to give them
special meaning or control
them in other ways

• eg., a function qualified with
range will work on a range of
lines. Countwords will be
invoked as:
:10,20call Countwords()
a:firstline, a:lastline
are the built in args that will
have 10 and 20 respectively

“discontinue running at first error
function Procdata(“data.json”) abort
.
.
endfunction

function Countwords() range
let lnum = a:firstline
let n = 0
while lnum <= a:lastline
let n += len(split(getline(lnum)))
lnum += 1

endwhile
echo “found “.n.” words.”

endfunction

2121 Open slide master to edit

Function References

• Functions may be assigned
to variables as references
using the function()
function🇳🇱

• The variable that holds a
function reference is of type
funcref

• Funcref variable name must
start with a capital letter

function Fizzbuzz(n)
if a:n % 3 == 0 && a:n % 5 == 0
return “FizzBuzz”

elseif a:n % 3 == 0
return “Fizz”

elseif a:n % 5 == 0
return “Buzz”

else
return “None”

endif
endfunction

let Afunc = function('Fizzbuzz’)

“call function may be used to invoke
the function referred to by the funcref
echo call(Afunc, [15])

2222 Open slide master to edit

Dict Functions 🇳🇱🤯

• Functions can be directly
associated with a dictionary!

• Apparently, they need not
be starting with a capital
letter!

• The dict is referred using self
inside the function

• A dict function may be
invoked using . on the dict

let en2es =
{'one':'uno','two':'dos','three':'tres'
}

function en2es.translate(line) dict
return join(map(
split(a:line),'get(self,v:val,"???")’
)
)

endfunction

echo en2es.translate('one two three
four’)

“expected output
uno dos tres ???

2323 Open slide master to edit

Miscellaneous

• Abbreviations are allowed 🤯

• No automatic garbage
collection, use unlet var to
delete defined variables,
delfunction Fname to
delete functions

• Special expressions for
reading environment
variables, Vim options and
registers

“ This is valid code
fu Mul(num)
for i in range(11)
ec i." X ".a:num." = ".i*a:num

endfor
endfu
call Mul(7)
q

let x = 900 |”define a var
unlet x |”undefine it

echo $PATH |”env var
echo &ts |”value of tabstop
echo @r |”contents of register r

2424 Open slide master to edit

Summary

• A scripting language that comes packed with an editor

• Reasonably featureful

• Portable -- works anywhere vim is installed

• Actively being developed and maintained

2525 Open slide master to edit

References

• vimdoc.sourceforge.net

• blog.prabir.me/posts/learning-vimscript

• begriffs.com/posts/2019-07-19-history-use-vim.html

• learnvimscriptthehardway.stevelosh.com

2626 Open slide master to edit

Thank you for your time! Questions?

